Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
BMJ Open Respir Res ; 11(1)2024 May 09.
Article En | MEDLINE | ID: mdl-38724453

BACKGROUND: Long-term survival after lung transplantation is limited compared with other organ transplants. The main cause is development of progressive immune-mediated damage to the lung allograft. This damage, which can develop via multiple immune pathways, is captured under the umbrella term chronic lung allograft dysfunction (CLAD). Despite the availability of powerful immunosuppressive drugs, there are presently no treatments proven to reverse or reliably halt the loss of lung function caused by CLAD. The aim of the E-CLAD UK trial is to determine whether the addition of immunomodulatory therapy, in the form of extracorporeal photopheresis (ECP), to standard care is more efficacious at stabilising lung function in CLAD compared with standard care alone. METHODS AND ANALYSIS: E-CLAD UK is a Phase II clinical trial of an investigational medicinal product (Methoxsalen) delivered to a buffy coat prepared via an enclosed ECP circuit. Target recruitment is 90 bilateral lung transplant patients identified as having CLAD and being treated at one of the five UK adult lung transplant centres. Participants will be randomised 1:1 to intervention plus standard of care, or standard of care alone. Intervention will comprise nine ECP cycles spread over 20 weeks, each course involving two treatments of ECP on consecutive days. All participants will be followed up for a period of 24 weeks.The primary outcome is lung function stabilisation derived from change in forced expiratory volume in one second and forced vital capacity at 12 and 24 weeks compared with baseline at study entry. Other parameters include change in exercise capacity, health-related quality of life and safety. A mechanistic study will seek to identify molecular or cellular markers linked to treatment response and qualitative interviews will explore patient experiences of CLAD and the ECP treatment.A patient and public advisory group is integral to the trial from design to implementation, developing material to support the consent process and interview materials. ETHICS AND DISSEMINATION: The East Midlands-Derby Research Ethics Committee has provided ethical approval (REC 22/EM/0218). Dissemination will be via publications, patient-friendly summaries and presentation at scientific meetings. TRIAL REGISTRATION NUMBER: EudraCT number 2022-002659-20; ISRCTN 10615985.


Lung Transplantation , Photopheresis , Humans , Photopheresis/methods , Prospective Studies , United Kingdom , Methoxsalen/therapeutic use , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Quality of Life , Adult , Male , Female , Primary Graft Dysfunction/therapy , Allografts , Treatment Outcome , Lung/physiopathology , Graft Rejection , Middle Aged
2.
BMJ Open ; 14(4): e077132, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38626966

OBJECTIVE: International trials can be challenging to operationalise due to incompatibilities between country-specific policies and infrastructures. The aim of this systematic review was to identify the operational complexities of conducting international trials and identify potential solutions for overcoming them. DESIGN: Systematic review. DATA SOURCES: Medline, Embase and Health Management Information Consortium were searched from 2006 to 30 January 2023. ELIGIBILITY CRITERIA: All studies reporting operational challenges (eg, site selection, trial management, intervention management, data management) of conducting international trials were included. DATA EXTRACTION AND SYNTHESIS: Search results were independently screened by at least two reviewers and data were extracted into a proforma. RESULTS: 38 studies (35 RCTs, 2 reports and 1 qualitative study) fulfilled the inclusion criteria. The median sample size was 1202 (IQR 332-4056) and median number of sites was 40 (IQR 13-78). 88.6% of studies had an academic sponsor and 80% were funded through government sources. Operational complexities were particularly reported during trial set-up due to lack of harmonisation in regulatory approvals and in relation to sponsorship structure, with associated budgetary impacts. Additional challenges included site selection, staff training, lengthy contract negotiations, site monitoring, communication, trial oversight, recruitment, data management, drug procurement and distribution, pharmacy involvement and biospecimen processing and transport. CONCLUSIONS: International collaborative trials are valuable in cases where recruitment may be difficult, diversifying participation and applicability. However, multiple operational and regulatory challenges are encountered when implementing a trial in multiple countries. Careful planning and communication between trials units and investigators, with an emphasis on establishing adequately resourced cross-border sponsorship structures and regulatory approvals, may help to overcome these barriers and realise the benefits of the approach. OPEN SCIENCE FRAMEWORK REGISTRATION NUMBER: osf-registrations-yvtjb-v1.


Pharmacy , Humans , Sample Size , Budgets
3.
BMJ Open ; 14(4): e073639, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38631839

INTRODUCTION: Characterised by chronic inflammation of the gastrointestinal tract, inflammatory bowel disease (IBD) symptoms including diarrhoea, abdominal pain and fatigue can significantly impact patient's quality of life. Therapeutic developments in the last 20 years have revolutionised treatment. However, clinical trials and real-world data show primary non-response rates up to 40%. A significant challenge is an inability to predict which treatment will benefit individual patients.Current understanding of IBD pathogenesis implicates complex interactions between host genetics and the gut microbiome. Most cohorts studying the gut microbiota to date have been underpowered, examined single treatments and produced heterogeneous results. Lack of cross-treatment comparisons and well-powered independent replication cohorts hampers the ability to infer real-world utility of predictive signatures.IBD-RESPONSE will use multi-omic data to create a predictive tool for treatment response. Future patient benefit may include development of biomarker-based treatment stratification or manipulation of intestinal microbial targets. IBD-RESPONSE and downstream studies have the potential to improve quality of life, reduce patient risk and reduce expenditure on ineffective treatments. METHODS AND ANALYSIS: This prospective, multicentre, observational study will identify and validate a predictive model for response to advanced IBD therapies, incorporating gut microbiome, metabolome, single-cell transcriptome, human genome, dietary and clinical data. 1325 participants commencing advanced therapies will be recruited from ~40 UK sites. Data will be collected at baseline, week 14 and week 54. The primary outcome is week 14 clinical response. Secondary outcomes include clinical remission, loss of response in week 14 responders, corticosteroid-free response/remission, time to treatment escalation and change in patient-reported outcome measures. ETHICS AND DISSEMINATION: Ethical approval was obtained from the Wales Research Ethics Committee 5 (ref: 21/WA/0228). Recruitment is ongoing. Following study completion, results will be submitted for publication in peer-reviewed journals and presented at scientific meetings. Publications will be summarised at www.ibd-response.co.uk. TRIAL REGISTRATION NUMBER: ISRCTN96296121.


Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Colitis, Ulcerative/therapy , Crohn Disease/drug therapy , Inflammatory Bowel Diseases/drug therapy , Multicenter Studies as Topic , Observational Studies as Topic , Precision Medicine , Prospective Studies , Quality of Life
4.
Stat Methods Med Res ; 32(2): 287-304, 2023 02.
Article En | MEDLINE | ID: mdl-36384365

Repeated testing in a group sequential trial can result in bias in the maximum likelihood estimate of the unknown parameter of interest. Many authors have therefore proposed adjusted point estimation procedures, which attempt to reduce such bias. Here, we describe nine possible point estimators within a common general framework for a two-stage group sequential trial. We then contrast their performance in five example trial settings, examining their conditional and marginal biases and residual mean square error. By focusing on the case of a trial with a single interim analysis, additional new results aiding the determination of the estimators are given. Our findings demonstrate that the uniform minimum variance unbiased estimator, whilst being marginally unbiased, often has large conditional bias and residual mean square error. If one is concerned solely about inference on progression to the second trial stage, the conditional uniform minimum variance unbiased estimator may be preferred. Two estimators, termed mean adjusted estimators, which attempt to reduce the marginal bias, arguably perform best in terms of the marginal residual mean square error. In all, one should choose an estimator accounting for its conditional and marginal biases and residual mean square error; the most suitable estimator will depend on relative desires to minimise each of these factors. If one cares solely about the conditional and marginal biases, the conditional maximum likelihood estimate may be preferred provided lower and upper stopping boundaries are included. If the conditional and marginal residual mean square error are also of concern, two mean adjusted estimators perform well.


Likelihood Functions , Bias
5.
Clin Trials ; 20(1): 59-70, 2023 02.
Article En | MEDLINE | ID: mdl-36086822

BACKGROUND/AIMS: To evaluate how uncertainty in the intra-cluster correlation impacts whether a parallel-group or stepped-wedge cluster-randomized trial design is more efficient in terms of the required sample size, in the case of cross-sectional stepped-wedge cluster-randomized trials and continuous outcome data. METHODS: We motivate our work by reviewing how the intra-cluster correlation and standard deviation were justified in 54 health technology assessment reports on cluster-randomized trials. To enable uncertainty at the design stage to be incorporated into the design specification, we then describe how sample size calculation can be performed for cluster- randomized trials in the 'hybrid' framework, which places priors on design parameters and controls the expected power in place of the conventional frequentist power. Comparison of the parallel-group and stepped-wedge cluster-randomized trial designs is conducted by placing Beta and truncated Normal priors on the intra-cluster correlation, and a Gamma prior on the standard deviation. RESULTS: Many Health Technology Assessment reports did not adhere to the Consolidated Standards of Reporting Trials guideline of indicating the uncertainty around the assumed intra-cluster correlation, while others did not justify the assumed intra-cluster correlation or standard deviation. Even for a prior intra-cluster correlation distribution with a small mode, moderate prior densities on high intra-cluster correlation values can lead to a stepped-wedge cluster-randomized trial being more efficient because of the degree to which a stepped-wedge cluster-randomized trial is more efficient for high intra-cluster correlations. With careful specification of the priors, the designs in the hybrid framework can become more robust to, for example, an unexpectedly large value of the outcome variance. CONCLUSION: When there is difficulty obtaining a reliable value for the intra-cluster correlation to assume at the design stage, the proposed methodology offers an appealing approach to sample size calculation. Often, uncertainty in the intra-cluster correlation will mean a stepped-wedge cluster-randomized trial is more efficient than a parallel-group cluster-randomized trial design.


Research Design , Humans , Cross-Sectional Studies , Uncertainty , Randomized Controlled Trials as Topic , Sample Size , Cluster Analysis
6.
Stat Methods Med Res ; 30(3): 702-716, 2021 03.
Article En | MEDLINE | ID: mdl-33234028

Composite endpoints that combine multiple outcomes on different scales are common in clinical trials, particularly in chronic conditions. In many of these cases, patients will have to cross a predefined responder threshold in each of the outcomes to be classed as a responder overall. One instance of this occurs in systemic lupus erythematosus, where the responder endpoint combines two continuous, one ordinal and one binary measure. The overall binary responder endpoint is typically analysed using logistic regression, resulting in a substantial loss of information. We propose a latent variable model for the systemic lupus erythematosus endpoint, which assumes that the discrete outcomes are manifestations of latent continuous measures and can proceed to jointly model the components of the composite. We perform a simulation study and find that the method offers large efficiency gains over the standard analysis, the magnitude of which is highly dependent on the components driving response. Bias is introduced when joint normality assumptions are not satisfied, which we correct for using a bootstrap procedure. The method is applied to the Phase IIb MUSE trial in patients with moderate to severe systemic lupus erythematosus. We show that it estimates the treatment effect 2.5 times more precisely, offering a 60% reduction in required sample size.


Lupus Erythematosus, Systemic , Humans , Logistic Models , Lupus Erythematosus, Systemic/drug therapy , Research Design , Sample Size , Treatment Outcome
7.
BMC Cancer ; 20(1): 80, 2020 Jan 31.
Article En | MEDLINE | ID: mdl-32005187

BACKGROUND: Multi-arm designs provide an effective means of evaluating several treatments within the same clinical trial. Given the large number of treatments now available for testing in many disease areas, it has been argued that their utilisation should increase. However, for any given clinical trial there are numerous possible multi-arm designs that could be used, and choosing between them can be a difficult task. This task is complicated further by a lack of available easy-to-use software for designing multi-arm trials. RESULTS: To aid the wider implementation of multi-arm clinical trial designs, we have developed a web application for sample size calculation when using a variety of popular multiple comparison corrections. Furthermore, the application supports sample size calculation to control several varieties of power, as well as the determination of optimised arm-wise allocation ratios. It is built using the Shiny package in the R programming language, is free to access on any device with an internet browser, and requires no programming knowledge to use. It incorporates a variety of features to make it easier to use, including help boxes and warning messages. Using design parameters motivated by a recently completed phase II oncology trial, we demonstrate that the application can effectively determine and evaluate complex multi-arm trial designs. CONCLUSIONS: The application provides the core information required by statisticians and clinicians to review the operating characteristics of a chosen multi-arm clinical trial design. The range of designs supported by the application is broader than other currently available software solutions. Its primary limitation, particularly from a regulatory agency point of view, is its lack of validation. However, we present an approach to efficiently confirming its results via simulation.


Clinical Trials as Topic/methods , Data Interpretation, Statistical , Humans , Research Design , Sample Size , Software , Web Browser
8.
Stat Methods Med Res ; 29(1): 230-242, 2020 01.
Article En | MEDLINE | ID: mdl-30799777

It is often of interest to explore how dose affects the toxicity and efficacy properties of a novel treatment. In oncology, efficacy is often assessed through response, which is defined by a patient having no new tumour lesions and their tumour size shrinking by 30%. Usually response and toxicity are analysed as binary outcomes in early phase trials. Methods have been proposed to improve the efficiency of analysing response by utilising the continuous tumour size information instead of dichotomising it. However, these methods do not allow for toxicity or for different doses. Motivated by a phase II trial testing multiple doses of a treatment against placebo, we propose a latent variable model that can estimate the probability of response and no toxicity (or other related outcomes) for different doses. We assess the confidence interval coverage and efficiency properties of the method, compared to methods that do not use the continuous tumour size, in a simulation study and the real study. The coverage is close to nominal when model assumptions are met, although can be below nominal when the model is misspecified. Compared to methods that treat response as binary, the method has confidence intervals with 30-50% narrower widths. The method adds considerable efficiency but care must be taken that the model assumptions are reasonable.


Antineoplastic Agents/administration & dosage , Antineoplastic Agents/toxicity , Dose-Response Relationship, Drug , Neoplasms/drug therapy , Quinazolines/administration & dosage , Quinazolines/toxicity , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Humans , Medical Oncology , Randomized Controlled Trials as Topic
9.
Clin Trials ; 14(5): 507-517, 2017 Oct.
Article En | MEDLINE | ID: mdl-28653550

BACKGROUND/AIMS: The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. METHODS: Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. RESULTS: We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial's type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. CONCLUSION: The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should consider incorporating early stopping of some kind into stepped-wedge cluster randomised trials according to the needs of the particular trial.


Endpoint Determination/standards , Randomized Controlled Trials as Topic , Research Design/standards , Humans , Linear Models , Medical Futility , Patient Selection , Sample Size , Treatment Outcome
10.
Stat Methods Med Res ; 26(4): 1671-1683, 2017 Aug.
Article En | MEDLINE | ID: mdl-26037529

Phase II oncology trials are conducted to evaluate whether the tumour activity of a new treatment is promising enough to warrant further investigation. The most commonly used approach in this context is a two-stage single-arm design with binary endpoint. As for all designs with interim analysis, its efficiency strongly depends on the relation between recruitment rate and follow-up time required to measure the patients' outcomes. Usually, recruitment is postponed after the sample size of the first stage is achieved up until the outcomes of all patients are available. This may lead to a considerable increase of the trial length and with it to a delay in the drug development process. We propose a design where an intermediate endpoint is used in the interim analysis to decide whether or not the study is continued with a second stage. Optimal and minimax versions of this design are derived. The characteristics of the proposed design in terms of type I error rate, power, maximum and expected sample size as well as trial duration are investigated. Guidance is given on how to select the most appropriate design. Application is illustrated by a phase II oncology trial in patients with advanced angiosarcoma, which motivated this research.


Clinical Trials, Phase II as Topic/methods , Endpoint Determination/methods , Neoplasms/drug therapy , Research Design , Hemangiosarcoma/drug therapy , Humans , Sample Size , Time Factors , Treatment Outcome
11.
Clin Trials ; 13(4): 417-24, 2016 08.
Article En | MEDLINE | ID: mdl-26968939

BACKGROUND/AIMS: Many types of telehealth interventions rely on activity from the patient in order to have a beneficial effect on their outcome. Remote monitoring systems require the patient to record regular measurements at home, for example, blood pressure, so clinicians can see whether the patient's health changes over time and intervene if necessary. A big problem in this type of intervention is non-compliance. Most telehealth trials report compliance rates, but they rarely compare compliance among various options of telehealth delivery, of which there may be many. Optimising telehealth delivery is vital for improving compliance and, therefore, clinical outcomes. We propose a trial design which investigates ways of improving compliance. For efficiency, this trial is embedded in a larger trial for evaluating clinical effectiveness. It employs a technique called micro-randomisation, where individual patients are randomised multiple times throughout the study. The aims of this article are (1) to verify whether the presence of an embedded secondary trial still allows valid analysis of the primary research and (2) to demonstrate the usefulness of the micro-randomisation technique for comparing compliance interventions. METHODS: Simulation studies were used to simulate a large number of clinical trials, in which no embedded trial was used, a micro-randomised embedded trial was used, and a factorial embedded trial was used. Each simulation recorded the operating characteristics of the primary and secondary trials. RESULTS: We show that the type I error rate of the primary analysis was not affected by the presence of an embedded secondary trial. Furthermore, we show that micro-randomisation is superior to a factorial design as it reduces the variation caused by within-patient correlation. It therefore requires smaller sample sizes - our simulations showed a requirement of 128 patients for a micro-randomised trial versus 760 patients for a factorial design, in the presence of within-patient correlation. CONCLUSION: We believe that an embedded, micro-randomised trial is a feasible technique that can potentially be highly useful in telehealth trials.


Patient Compliance/statistics & numerical data , Research Design , Telemedicine/organization & administration , Delivery of Health Care/methods , Humans , Pilot Projects , Sample Size
12.
Stat Methods Med Res ; 25(3): 1010-21, 2016 06.
Article En | MEDLINE | ID: mdl-26031358

Phase II oncology trials are carried out to assess whether an experimental anti-cancer treatment shows sufficient signs of effectiveness to justify being tested in a phase III trial. Traditionally such trials are conducted as single-arm studies using a binary response rate as the primary endpoint. In this article, we review and contrast alternative approaches for such studies. Each approach uses only data that are necessary for the traditional analysis. We consider two broad classes of methods: ones that aim to improve the efficiency using novel design ideas, such as multi-stage and multi-arm multi-stage designs; and ones that aim to improve the analysis, by making better use of the richness of the data that is ignored in the traditional analysis. The former class of methods provides considerable gains in efficiency but also increases the administrative and logistical issues in running the trial. The second class consists of viable alternatives to the standard analysis that come with little additional requirements and provide considerable gains in efficiency.


Clinical Trials, Phase II as Topic/methods , Medical Oncology/methods , Neoplasms/drug therapy , Research Design , Biomedical Research/methods , Humans
...